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On the gravitational radiation formula 
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Germany 

Received 19 November 1979, in final form 19 January 1980 

Abstract. For electromagnetically as well as gravitationally bound quantum mechanical 
many-body systems the coefficients of absorption and induced emission of gravitational 
radiation are calculated in the first-order approximation. The results are extended 
subsequently to systems with arbitrary non-Coulomb-like two-particle interaction poten- 
tials; it is shown explicitly that in all cases the perturbation of the binding potentials of the 
bound systems by the incident gravitational wave field itself must be taken into account. 

With the help of the thermodynamic equilibrium of gravitational radiation and quan- 
tised matter, the coefficients for spontaneous emission of gravitational radiation are derived 
and the gravitational radiation formula for emission of gravitational quadrupole radiation 
by bound quantum mechanical many-body systems is given. According to the cor- 
respondence principle our result is completely identical with the well known classical 
radiation formula, by which recent criticism against this formula is refuted. 

Finally the quantum mechanical absorption cross section for gravitational quadrupole 
radiation is deduced and compared with the corresponding classical expressions. As a 
special example the vibrating two-mass quadrupole is treated explicitly. 

1. Introduction 

With the discovery of the orbital phase shift of the binary pulsar PSR 1913 + 16 by 
Taylor et a1 (1979) the formula for emission of gravitational quadrupole radiation has 
obtained essential significance. The expression for the average rate of energy loss of a 
physical system due to gravitational quadrupole radiation has been given already by 
Einstein in 1918. His result, which has appeared in several textbooks (see e.g. Landau 
and Lifshitz 1975), has the form 

- = - A T T -  f d3Qab d3Qab‘ A = l  45 9 

dE 
dt dt3 ’ 

where Qab is the mass quadrupole tensor of the radiation source and f is the Newtonian 
gravitational constant. Some time ago, however, Ehlers et a1 (1976) argued that this 
formula has not yet been derived either exactly or by means of a consistent approxima- 
tion method for integration of Einstein’s field equations of gravitation. Their 
conclusion is that therefore the value of the factor A in (1.1) is very uncertain. As far as 
we know this situation has not been changed until now. 

In this paper we point to the possibility of proving equation (1.1) in a way different 
from the usual ones which avoids the difficulty of integration of the inhomogeneous field 
equations of gravitation. Instead of constructing a classical bound system as radiation 
source and integrating Einstein’s field equations, we start from a quantum mechanical 
bound system described by the Schrodinger limit of the Klein-Gordon theory. Then we 
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disturb it by an incident plane gravitational wave satisfying Einstein's vacuum field 
equations, whereby we restrict ourselves to weak gravitational waves in the framework 
of the linearised theory. By the time-dependent perturbation method the transition 
probabilities of absorption and induced emission of gravitational radiation can be 
calculated. This has been done already by several authors using special systems, for 
instance a harmonic oscillator (Grafe and Dehnen 1976) or the hydrogen atom with 
fixed nucleus (Ropke 1972, Vinet 1977). In contrast to this it is our aim to start from an 
arbitrarily (electromagnetically, gravitationally, etc) bound and closed quantum 
mechanical system and to deduce from its transition probabilities for absorption and 
induced emission the transition probabilities of spontaneous emission of gravitational 
radiation?. This is possible in a simple manner-following Einstein's considerations for 
the electromagnetic case-by the assumption of thermodynamic equilibrium between 
gravitational radiation and bound quantum mechanical matter systems. In doing so we 
restrict ourselves in the following to the quadrupole approximation level. 

For the special case of a linear harmonic quantum mechanical oscillator Grafe and 
Dehnen (1976) have performed just such a calculation. Unfortunately they have 
assumed a 'rigid' oscillator, the internal potential of which is not influenced by the 
external gravitational wave field. As we show in the following, such an assumption is 
physically unrealistic. A gravitational influence on the internal potentials is always 
present, in consequence of which the result of Grafe and Dehnen is only correct 
qualitatively but not quantitatively; it is smaller by a factor four than the exact one. In 
the paper of Vinet (1977) the influence of the gravitational wave field on the Coulomb 
potential of the hydrogen atom is neglected also; a correct consideration of the 
perturbation of the Coulomb field by the gravitational wave field is given by Ropke 
(1 972). 

By our procedure, which seems to be more simple than the classical absorption and 
emission problem, the formulae for absorption as well as for emission of gravitational 
radiation can be derived simultaneously even for classical systems, if one goes over 
finally to the classical limit according to the correspondence principle. We find 
agreement with the classical result for emission and for absorption, and the usual 
phenomenological acceleration formula for the relative distance x a  of two oscillator 
masses (see e.g. Misner et a1 1973) 

(1.2) ' I T "  b X a  + W i ( X a  -2L") = - R 4b4X 

(*Rapy6 is the Riemann tensor of the =-gauged gravitational wave field; 2L" is the 
rest distance of the oscillator masses) can be established explicitly on the basis of a 
microscopic model. 

In order to facilitate the comparison of the classical emission formula with the 
quantum mechanical result it is useful to expand the quadrupole tensor in (1.1) 
according to the Fourier theorem 

Q a b  = [ Q , b ( k J j )  eiw" -k Qf(Uj )  e-iwJ'], (1.3) 
i 

assuming a periodic source for the gravitational radiation. Then (1.1) results in 

(1.4) 

t The quantum mechanical treatment of gravitational radiation from non-bound systems is performed 
especially by Weinberg (1965) and DeWitt (1967). See also Barker et a1 (1969). 
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This formula will be exactly confirmed by the detailed quantum mechanical calculation, 
if the well known substitution of the matrix elements through the corresponding Fourier 
coefficients is performed. 

Finally we remark that our procedure is justified also by the fact that quantum 
theory possesses priority over the classical one and that therefore all classical physics 
and its results are to be deduced from quantum physics in the classical limit. 

2. The interaction operator for gravitational wave fields 

2.1. The external gravitational field 

We use for the metric of space-time the linear approximation with respect to the flat 
metric?: 

(2.la) 

Raising and lowering of tensor indices will be performed in the following by vFLY and q,, 
respectively. Then 

y @ y  = -hw’ (2.16) 

is valid. Additionally we demand the de Donder condition given by+ 

( h  = h,,). (2.2) 
1 hWala -&,, = 0 

Then Einstein’s vacuum field equations take the form 

h,,i,l” = 0. (2.3) 
The solution of (2.3) for a plane wave propagating in the direction of the x 3  axis can be 
written with respect to (2.2): 

3 h i i ( v )  = - h 2 2 ( ~ )  # 0,  hiz(0)  + 0, v = t - x  / e ,  
(2.4) 

h,, = 0 otherwise. 

A corresponding representation of h,, is valid, if the propagation direction is deter- 
mined by the x 1  or the x2  axis. Accordingly we obtain for the wave field from (2.2) and 
(2.4) within our approximation (ZT-gauge): 

hq, = 0, h = 0 ,  hmaia = 0 ,  g = det(g,,) = -1. (2.5) 

2.2. The electromagnetically bound matter field 

We consider first an electromagnetically coupled quantum mechanical system. To 
describe it we start from the general covariant minimally coupled Klein-Gordon 

i Greek indices run from 1 up to 4, Latin indices from 1 up to 3. The fourth coordinate is x4 = ct. 
$: I Y  signifies the ordinary and I/v the covariant partial derivative with respect to x ” .  
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equationt 

-2i(e/hc)A'"+l, - (e/hc)2A'IAYg,y$ - (mc/h)'$ = 0, (2.6) 

where the Lorentz condition 

A'"ii, = 0 (2.7) 

for the electromagnetic 4-potential A/* is used. Going over to the Schrodinger equation 
we substitute 

(2.8) 4 ( x  I * )  = esp[-i(mc2/fi)t] ~ ( x  I * )  

and neglect all terms up to the explicit order of c-'. Then we get from (2.6), in the case 
of the linearised plane gravitational wave, using (2.1) and (2.5): 

h2 eh h2 a@ 
2m mc 2m at 
-@la'" -eA4@-i-A"@1, --hab@Iaib = -ih- (2.9) 

with the magnetic vector poteniial A" and the electric potential A4.  One obtains the 
same result in the Schrodinger limit starting from the general covariant Dirac equation. 

The last term on the left-hand side of equation (2.9) represents the explicit deviation 
from the Schrodinger equation in flat space-time in consequence of the interaction with 
the gravitational wave field. However the foregoing terms containing the electric 
potential A 4  and the magnetic potential A" are also disturbed by the gravitational 
wave, because the 4-potential AI* is influenced by the gravitational wave via the 
covariant Maxwell equations. This is the reason for the fact that all calculations with 
rigid internal potentials of the matter system are inconsistent. 

Accordingly we set 

(2.10) Aa =%)a + X a ,  A4 = %)4 + p, 
(1) (114 

where A" and A represent the perturbation of the 4-potential caused by the wave in 
first order of hab. Then equation (2.9) reads 

ti2 (0)  eh (0 )  a@ -@~,i"-eA4@-i-Aa@~a -GO=-ih-  
2m mc at 

with the first-order perturbation operator 

h2 (1) eh (I), 

2m mc 
G=-hab a, db+eA4+i-A a,. 

(2.11) 

(2.1 l a )  

In view of the last two terms there exists an amplification of the gravitational influence 
on a quantum mechanical system by the perturbation of the (binding) electromagnetic 
fields (enhancement of the result of Grafe and Dehnen (1976) by a factor four). 

Neglecting all magnetic effects in view of the factor c-l, we obtain finally in the 
lowest perturbation order 

(2.12) 

t The difference to conformal coupling plays no role in the following. 
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Accordingly the one-particle Hamiltonian has the form 

H-Ho+ w 
with 

(2.12a) 

(0)  (o)4 
H,, = -(h2/2m) a, a’ + D, V =  eA (2.12b) 

and the perturbation operator 
(1) (1)  (U4 

W=(h2/2m)hab a, ab+ v ,  V = e A .  (2.12c) 

For calculation of the perturbation potentials and g4 we start from the general 

( - g ) - ” 2 ( d ~ F ” ” ) ~ u  = 4 r j ”  (2.13) 

covariant Maxwell equation 

with 

Fpy =AUiw -Awlu. (2.13a) 

With the use of the Lorentz condition (2.7) we obtain for the potentials (2.10), in the 
case of the wave metric (2.1) with the properties (2.5) (a dot means the partial derivative 
with respect to t), 

where the 4-current j ”  is decomposed into 
( q ) ,  (1,)” 

j ” = l  + I  (2.15) 

analogously to the potentials. 
Now we must restrict ourselves, in view of the following quantum mechanical 

approach, to point sources of the electromagnetic field localised in a finite region, i.e. to 
the special form of the 4-current (see Landau and Lifshitz 1975, p 256) 

(2.16) 

with the electric point charges qi at the positions x& t. From (2.16).it follows 
immediately up to the first-order approximation (see (2.5)) that 

t The 8 function is defined by 8 ( x a  - 1’“) d3x‘ = 1. 
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and therefore in view of (2.15) 
(1) 
j '*(xu) = 0. (2.166) 

If we consider the sources of the electromagnetic field as classical ones, the solution of 
the classical equations of motion for the coordinates x t )  of the point charges would be 
necessary. But in contrast to this in the framework of a closed quantum mechanical 
system, which is our aim (see 0 3), this is not correct because the motion of the charges is 
then determined by the many-particle Schrodinger equation in a self-consistent way. 

By restricting ourselves to the non-magnetic limit (2.12) only the knowledge of A4,  
i.e. of '?I4 and 'f'4 (cf (2.14)), is necessary. Then the differential equations (2.14) are 
reduced to ( 2 . 1 4 ~ )  and (2.146) diminished by the magnetic terms; in view of ( 2 . 1 6 ~ )  
and (2,166) we find 

( 2 . 1 7 ~ )  

(1)  (0)4 
A41)" = A lalbhab. (2.176) 

Evidently the assumption of a rigid potential (see e.g. Grafe and Dehnen 1976, Vinet 
1977) is incorrect; but the supposition of a rigid charge distribution (2.16b) is justified 
within the first approximation. The equations (2.17) have as solutions the well known 
retarded integrals; but in view of our limit (velocity of the point sources small compared 
with the velocity of light, wavelength of the gravitational radiation large compared with 
the domain of the distribution of the sources) we can neglect the retardation and get 

(p 1 " -  
lu - - 4 ~  C qi S(X" -x;)), 

i 

( 2 . 1 8 ~ )  

(2.186) 

In order to make the integration problem (2.176) in view of ( 2 . 1 8 ~ )  mathematically 
well defined it is necessary to avoid the singularity of A at the positions of the sources 
and to damp the potential sufficiently in the space-like infinity. Accordingly we modify 
A4 in the integral (2.186) as follows: 

(0)4 

(0 )  

( 2 . 1 8 ~ )  

which goes over into the solution ( 2 . 1 8 ~ )  in the limit p + 0, a + 0. Then using the 
relation 

A'Ix" - ~ ' " l = 2 / l ~ " - ~ ' " l  

we obtain from (2.186), with the help of Green's second formula, 

1 
8rr 

= --h"'b'(t) I x "  - X ' " I ( A ' ~ ~ ( X " ) ) I , , , ~ ,  d3x' 

(x") = --h"'b'(t) I x4~~o lb t (x 'u )  A' I x "  -x ' " /  d3x' 

1 
87r 

(2.19) 
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The last integral is well defined also in the limit p + 0, a + 0. Herewith we can use 
(2 .18a) ,  and equation (2.19) yields 

J i 

By partial integration we find 

J i 

=bhnb(t)aa a b  l q i l x n - x ( : : ) I .  
i 

Performing the differentiations we obtain the final result: 

(2.20) 

(2.21) 

(2.22) 

The one-particle Hamiltonian (2.12b) and its perturbation ( 2 . 1 2 ~ )  are determined by 
( 2 . 1 8 ~ )  and (2 .22) t .  

2.3. The gravitationally bound matter field 

The gravitationally bound system can be treated similarly to the electromagnetically 
coupled quantum mechanical system. In this case the metric ( 2 . 1 ~ )  must be extended, 
in view of the Newtonian static first-order terms G,,, and their perturbations vWY, by the 
gravitational wave field h,, : 

(2.23) g,, = q,, + h,, + awu + vWu. 
Here the Newtonian part of the metric has the following structure: 

2 
a l l =  a 2 2  = a 3 3  = a44 = - 2 u / c  , 

(2.24) 
a,, = 0 for p # v, 

where U is the scalar Newtonian potential determined by the differential equation 

AU = 47rf 1 mi S ( x "  - x G ) )  ( 2 . 2 5 ~ )  
i 

with the solution 

(2 .253)  

As in the electromagnetic case we have restricted ourselves to localised point masses mi 
as sources for the Newtonian gravitational field. Evidently a,, is of the order c - ~ ;  
furthermore it is de Donder gauged. 

The wave field h,, is given as before by (2.2)-(2.5).  Beyond this we need in the 
following the order of magnitude of h,, more precisely. Because the energy density U 

of the free radiation field is given in the sense of the second quantisation by the arbitrary 

t The result (2.22) can be derived from (2.176) also, neglecting the retardation, if one applies the 
8,8"-operator on (2.17b) and substitutes the right-hand side with regard to ( 2 . 1 7 ~ ~ ) .  With the help of 
A A ~ x "  -x '" l=  - 8 r S ( x "  - x ' " )  one finds immediately the solution (2.20). 
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number density n of gravitons multiplied by their energy hw, the order of h,, can be 
considered from (4.12), in view of (4.1), as c-’ (the remaining quantities n, h, w and f 
have no influence on the power of c). Or on the more classical level: in the transition 
case the energy of the radiation field is proportional to the absolute value of the 
potential energy of the bound matter system. B averaging over an appropriate 
normalising volume we find for its density (VU) /87f (self-energy terms are 
neglezted). Insertion into (4.12) yields the order of magnitude relation A 2 -  
(VU) / w 2 c 2 .  With wr-U, where in the sense of the correspondence principle r 
represents a mean diameter and D a typical intrinsic velocity of the system, it follows 
immediately that A -[((VU) ) / ( D ~ / ~ ) ] D / C .  Because the bracket has the order of the 
square root of the volume of the material system divided by the normalising volume 
(taking into account the comparability of gravitational force and centrifugal force), the 
order of magnitude of h,, is, in view of (4.1), given by u / c  apart from the root of the 
ratio of the volumes in question. 

+ 
2 1/2 

For ubV we demand as for h,, and d,, the de Donder condition: 

(2.26) 

The magnitude of the perturbation U,, will be found to be of the order of daphyS, and 
thus of c - ~ ,  under consideration of the differential equations for U,, following from 
Einstein’s field equations, taking into account all terms up to the order c - ~ ,  which 
implies at most linear in h,,, This means in the sense of second quantisation restriction 
to one-graviton processes only. 

With respect to the magnitudes of h,,, 6,, and U,, the inverse metric up to the order 
of c - ~  has the form 

g,V = 7 7 ~ u _ ~ ~ u _ ( ~ ~ Y _ ~ ~ ~ ~ , Y ) _ ( D ~ Y _ ~ ~ ~ ~ , Y _ ~ Y ~ ~ , ~  +h,*h,PhpV). ( 2 . 2 3 ~ )  

In the same approximation we go with the metric (2.23), ( 2 . 2 3 ~ ~ )  into the Klein-Gordon 
equation (2.6), neglecting the electromagnetic vector potential A’”. With the properties 
(2.2)-(2.5) and (2.23)-(2.26) and with the ansatz (2.8) we obtain the following 
Schrodinger equation up to the order of c-’: 

a 1  
U, 1, - z q ,  = 0 (D = U*,). 

h2 mc h2 alp 

2m 2 2m at 
- @ l a l a  +--(u’44 4- U44)@ - - h “b@lalb = -ih-. 

Accordingly the one-particle Hamiltonian has the form 

H=Ho+ W 

with 

(2.27) 

(2.28) 

(0)  (0) 
Ho = -(h2/2m) a, a“ + V ,  V =  -$mc2~44 = m u  ( 2 . 2 8 ~ )  

and the perturbation operator 
(1)  

W = (h2/2m)hab a, a b  + V ,  v=-L 2mc 2 2144. (2.286) 

The result (2.28) corresponds exactly to the one-particle Hamiltonian ( 2 . 1 2 ~ )  for the 
electromagnetic case. 

To calculate the perturbation potential V we start from Einstein’s field equations 

R,, = (877f/c4)(Twu -iTg,,) (2.29) 

(1) 

(1) 
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where, with point masses as sources (cf Landau and Lifshitz 1975), 

mic 2 dxP dx" 
TCLY = c =g,,g,- d7 - dX4 a b "  -4) (dT2 = -ds2). ( 2 . 2 9 ~ )  

i 4 - g  

In view of (2.286), only the equation (2.29) with p = v = 4 is relevant for the pertur- 
bation operator. In the order mentioned above (all terms up to the order c - ~ )  we obtain 

R44 = (4.rrf/c4)T44 (2.30) 

where, with respect to the properties of (2.23) and (2.29a), 

R - '  44 - - 2 A 6 4 4 - - & ~ 4 4 1 ~ "  +3hab644la/b, 

T44 = E  mic2 S(X" -x : i ) ) .  

( 2 . 3 0 ~ )  

(2.30b) 

With the use of (2.24) and ( 2 . 2 5 ~ )  we obtain from (2.30)-(2.306) the following 
differential equation for v44, which results from the homogeneous part of (2.30) only: 

i 

(2.31) 

(0)4 
and 644 with A . This equation is identical with (2.176), if one identifies 1144 with 

Because 644 is given according to (2.256) (see (2.24)) by 

(2.32) 

we immediately obtain, in view of (2.18a), the solution v44 from equation (2.22), 
substituting qi + ( 2 f / c 2 ) m i :  

(2.33) 

With (2.32) and (2.33) the one-particle Hamiltonian ( 2 . 2 8 ~ )  and its perturbation 
(2.286) are given in complete analogy to the electromagnetic case. On the other hand, 
in (2.31) the nonlinearity of Einstein's field equations is used explicitly, confirming the 
fact that the gravitational radiation of gravitationally bound systems is already a 
nonlinear effect in the lowest-order approximation. 

3. The many-particle Hamilton operator 

3.1. The electrodynamic and gravitational case 

In order to obtain a closed quantum mechanical system which interacts with the 
external gravitational wave field, we go over to the many-body problem. The cor- 
responding many-particle Hamiltonians are, in view of (2.126), (2.12c), ( 2 . 1 8 ~ )  and 
(2.22) and in view of (2.28a), (2.28b), (2.32) and (2.33), from the same structure in the 
electromagnetic and the gravitational case. One finds immediately by successive 
identification of the one particle with all other ones: 

(3.1) 
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where in the electromagnetic case q(i) are the charges qi of the particles and in the 
gravitational case qi) are connected with the masses mi of the particles according to 
q(i) = iJ-mi. 

Using the identity 

the perturbation operator (3 .2 )  takes in view of hab = hba the form 

With the definition of the mass quadrupole tensor 

Qab =I mi(3x&x& - r & q a b )  
i 

we obtain from (3 .4 )  

where the property haa = 0 (see (2 .5 ) )  is used. Evidently the gravitational radiation 
field described by the symmetric rank-two tensor hab couples automatically to the mass 
quadrupole tensor Qab of the matter in the lowest approximation. 

3.2. Generalised two-particle interaction 

The foregoing result for the interaction operator (3.6) in the electromagnetic and 
gravitational case has an interesting feature, which allows a generalisation of formula 
(3 .6 )  to other non-Coulomb-like two-particle interactions. 

If we define the potential energy and its perturbation in (3 .1 )  and (3 .2 )  respectively 
by (cf (2 .12b) ,  ( 2 . 1 2 ~ )  and ( 2 . 2 8 a ) ,  (2 .28b))  

we find the simple relation 

(3 .8 )  

(3 .9)  

Here the vector 6:) has the following meaning. In consequence of the gravitational 
wave the particle mi at the position x ; )  feels an acceleration with respect to the origin of 
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the coordinate system; in the lowest order one finds (see e.g. Misner et a1 1973)  

XG) = - T T R a 4 b 4 X h )  =$habX(4. ) .  (3 .10 )  

In the first iteration step the integral of (3 .10 )  has the form 

(3 .11 )  

(1) (0) 
with the initial condition x G) = x G) for absent hab. Accordingly the vector 6:) is the 

translation vector x - x G) induced by the gravitational wave and ( 3 . 9 )  has the 

meaning of the Lie derivative of the potential energy in the direction of the 
translation vector 6;) f. 

This geometrical interpretation of (3 .9 )  seems to be so fundamental that it should 
not be restricted to the Coulomb-like interaction potentials. On the contrary, it should 
be valid for arbitrary quasi-static two-particle interaction forces. Then the generalised 
perturbation operator (3 .2 )  reads 

(1) (0) 

with the two-particle interaction potential 

i # j  

With the undisturbed Hamiltonian 

we find analogously to (3 .3 )  the identity 

(3 .12 )  

( 3 . 1 2 ~ )  

(3 .13 )  

(3 .14 )  
i # j  

Inserting (3 .14 )  into (3.12)' we obtain with the definition (3 .5 )  the result 

w = (hab/12h2)[Ho, [Ho, QQbl1 (3 .15 )  

in full accordance with (3 .6 ) ,  but for arbitrary two-particle interaction potentials Vi (cf 
( 3 . 1 2 ~ )  and (3 .13 ) ) .  

4. Transition probabilities and absorption and emission power 

For the incident gravitational radiation we choose a superposition of compactly 
neighbouring monochromatic waves. In view of the fact that in the lowest approxima- 
tion (quadrupole approximation) the space dependence of the wave can be neglected 

t Note that in the non-relativistic limit the potential has the transformation property of a scalar quantity. 



2714 G Schafer and H Dehnen 

over the size of the quantum mechanical system, we set 

h a b ( t )  = JZ 1 A(,7[eQib,(a) exp(-iwit - is,) + 1 
exp(iwit + is,)] 

I 
(4.1) 

with (see (2.5)) 

( 4 . 1 ~ )  

Here the vector k( , )a  is the wavevector and represents the polarisation tensor of 
the wave with frequency wI and arbitrary phase S I ;  the index (a) signifies the two 
possible polarisation states and A ( ] )  means the real amplitudes of the monochromatic 
waves. 

Furthermore we assume that the energy eigenvalue problem of the undisturbed 
quantum mechanical system 

ab * 
e ? , ) ( a ) a  = 0 ,  e $ ( a ) k ( ] ) b  = 0, e ( l ) ( a ) e ( J ) ( @ ) a b  = 

H&A = EA@A, @A = ~ A ( x " )  exp(-iEAt/h) (4.2) 
is solved with the Hamiltonian Ho according to (3.13) ( A  is the collecting index for all 
quantum numbers; is a complete orthonormal function system). Then the full 
Schrodinger equation 

(4.3) 
with the perturbation operator (3.15) will be solved with the help of the time-dependent 
perturbation ansatz 

(E& + W ) @  = iti a@/at  

(4.3a) 

Using (4.1) and (4.2) one obtains, by a first iteration step for the transition probability 
(per time unit) for absorption and induced emission of gravitational radiation with the 
polarisation tensor 

(4.4) 

(4.4a) 

and the resonance frequency 

W A B  = (EB  EA)/^. (4.4b) 

For simplicity we have assumed that the initial and final states, dA and dB respectively, 
are non-degenerate. Insertion of ( 4 . 4 ~ )  into (4.4) gives, in view of (4.4b) and with 
respect to the fact that 4A and g3B are energy eigenstates of the Hamiltonian Ho (see 
(4.2)) 

1 le?h(a) (481 Qab 14A)12A?i) (4.5) r 4  

144h2WAB i 
WAsB(e?L))  =- 
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These transition probabilities are independent of the choice of the origin of the 
coordinate system in case of internal excitations of the matter systems. 

Now we consider two extensions of the result (4 .5 ) .  
(a) If we introduce an internal damping of the quantum mechanical system 

represented by the damping constant r (finite lifetimes of the states 4~ and 4 ~ ) ,  the S 
function in (4.5) must be substituted as follows: 

(b) In order to become free from the special polarisation state and the special 
direction of the wave propagation, we have to add up in (4 .5 )  all polarisation states and 
to integrate over all directions. Consequently the following substitution is necessary: 

(4 .7 )  le$(a) (4BIQabld’A) / ’  -* z [ e$(&?%) ( 4 B I Q a b I 4 A ) ( 4 B  IQcdl4A)*  dfi 

with the solid angle element dR. Besides the properties ( 4 .  l a )  the polarisation tensor 
fulfils the following completeness relation: 

* 
C e ( j ) ( = ) a b e ( i ? ( a ) c d  
n - 

1 . 1 1  

= 8 L a l b c c g d  f i a L b q c d  + l c l d q a b  - l b g d q a c  - k b k c v a d  

- Lalddrlbc - c a l c v b d  ‘t q a c q b d  + v a d q b c  - q a b q c d ) ,  ( 4 .8 )  

where la = k7,)/wi means the unit vector in the direction of the wavevector. Insertion 
of  (4 .8 )  into (4 .7 )  results with respect to Qab = Qba and Qaa = 0 (cf (3.5)) in 

z =2 [ (CcaLbLcLd - 4 l a l c q b d  + 2 q a c 7 7 b d ) ( ~ B j Q a b 1 4 A ) ( 4 B l Q C d j 4 A ) *  d a .  (4 .9 )  

With the relations (see e.g. Weinberg 1972 § 10.5) 

[ l a L b L c C d  &IT(qabVcd 4- v a c q b d  f q a d q b c ) ,  ( 4 . 1 0 ~ )  

we find from (4.9) the result 

z = ! r ( 4 B  I Q a b  1#A3)(48 I Qab I4A)*. ( 4 .11 )  

Finally we need in the following the energy density of the incident gravitational 
radiation (4 .1 ) .  Starting from the Landau-Lifshitz energy pseudotensor we find with 
the use of ( 4 . l a ) ,  after integration over all directions and adding up all polarisation 
states, 

U --  IT ~ ( w ~ c 2 / 3 2 ~ f ) A & .  (4 .12)  
i 

4.1. Transition probabilities for absorption and induced emission 

In the limit of vanishing damping (r’ = 0 ,  see (4.6)) the following substitution must be 
performed: 

(4 .13)  
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whereby the expression (4.5) becomes well defined. In this way we obtain from (4.5) 

(4.14) 

as transition probability for the polarisation state e::). In order to become free from the 
polarisation states and the propagation direction we have to make the substitution (4.7). 
With the result (4.1 1) we obtain the total transition probability 

WASB = ( . r r 2 / 9 0 A 2 ) w ~ ~ A 2 ( w ~ ~ ) ( 4 ~ l Q a b  I ~ A ) ( ~ B  lQab I ~ A ) * .  (4.15) 

Applying the transition (4.13) to the energy density (4.12), we find the spectral 

p ( w )  = 8.rr(w2c2/32.rrf)A2(w). (4.16) 

According to this the quantity A 2 ( w )  in (4.14) and (4.15) can be eliminated. We find 

WASB (e$)) = (T/  144h2)U id2(WAB)Ie ?:) ( 4 B  I Qab l4A)I2 

energy density of the gravitational radiation ( U  = p ( w )  dw): 

(4.17a) 

(4.17b) 

The total absorption power of the quantum mechanical system is obtained by multi- 
plication of (4.17b) by AOAB: 

LA+B = - 2.rr2f w ~ p  ( ~ A B M B  IQ=’ I ~ A M B  I ~~b MA)*. (4.18) 

We note here that the result (4.18) can be compared with experiments in general only 
for the absorption from the ground state. Otherwise the induced emission of radiation 
in consequence of a transition from the state IA) into a lower energy state must be 
subtracted in order to obtain the observable absorption power. Only in the last case is 
the transition to the classical limit possible in general (cf van Vleck 1924). 

By division of (4.17a) and (4.176) by the spectral density (4.16) we obtain Einstein’s 
transition probabilities for absorption and induced emission of gravitational radiation 
(W = pB): 

45Ac2 

and 

(4.19a) 

(4.19b) 

This result is larger by a factor four than the corresponding one in the paper of Grafe 
and Dehnen (1976). 

4.2. Transition probabilities for spontaneous emission 

With the help of thermodynamic equilibrium between the gravitational radiation and 
the quantum mechanical system, the relation between the already known coefficients 
BAeB and the transition probabilities for spontaneous emission A A - B  can be derived 
easily. Because this is a crucial point of our considerations the single steps will be 
summarised briefly. 



On the gravitational radiation formula 2717 

Considering two non-degenerate energy eigenstates EA and E B  (EB >EA) of a 
quantised matter system, the equilibrium condition between matter and gravitational 
radiation reads with respect to spontaneous and induced emission and to absorption 

(AA-B +PthBA+B) eXp(-EB/kT) = P ~ A - B  exp(-EA/kT), 
where Pth means the thermic spectral energy density of the radiation field and the 
exponential functions represent the occupation numbers of the energy states in 
question. The solution for AA+B reads, with regard to (4.46) and in view of BA+B = 

BA-B = BA-B, 

( 4 . 2 0 ~ )  

To calculate Pth(WAB) we start from the state density of the free gravitational 
radiation field. With respect to the stationary eigensolutions (for well defined boundary 
conditions) of the differential equation (2.3) and because of the two independent 
polarisation states this is given by wiB/7r2c3. Furthermore we restrict ourselves to the 
classical Boltzmann limit hwAB/kT << 1 .  In this case every state of the radiation field has 
the mean energy kT, so that we obtain (Rayleigh-Jeans law) 

AA-B = PthBAsB[exP(hwAB/kT) - 11. 

p th  = ( w ~ B / T ' C ~ ) ~ T .  

Insertion into ( 4 . 2 0 ~ )  and expansion of the exponential function results finally in 

AA+B ( ~ ~ ~ B / T ~ C ~ ) B A = B ,  (4.206) 

which gives together with the strong equation ( 4 . 2 0 ~ )  the Planck distribution Pth for the 
thermic gravitational radiation. Inversely with the Planck distribution (Bose gas of 
gravitons) the result (4,206) follows immediately from ( 4 . 2 0 ~ ) .  Evidently equation 
(4.206) is based on simple but fundamental physical principles which the gravitational 
radiation must fulfil also. 

Certainly the crucial relation (4,206) is not restricted to thermodynamic equilib- 
rium; we have used this only for deriving this general equationt. Together with (4.19) 
the transition probabilities for spontaneous emission of gravitational radiation by the 
quantum mechanical system have the form 

AA+s(e(",b)) = ( f / 3 6 7 r h c 5 ) w ~ ~ l e ~ ~ ) ( 4 ~ I Q a b 1 4 ~ ) 1 '  ( 4 . 2 1 ~ )  

and 

AA-B = (2f/45hC5)oa~(4~IQab14A)(4~ 1 Qab b$A)*. (4.216) 

Here the result ( 4 . 2 1 ~ )  belongs to the special polarisation mode e$'), whereas equation 
(4,216) means the total spontaneous emission coefficient. A special application of 
formula (4,216) to the hydrogen atom can be found in Weinberg (1972 0 10.8). 

After multiplication of (4,216) by the energy has (energy of the emitted gravitons) 
the total energy loss of the quantum mechanical system by gravitational quadrupole 
radiation results in 

(4.22) 

This formula is in exact agreement with Einstein's classical result (1.4) with wi = OAB in 

t Of course relation (4.206) can be deduced also by a full quantum-field theoretical calculation (see e.g. Schiff 
1968, Weinberg 1972 8 10.8). 
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the sense of the correspondence principle, according to which in the classical limit the 
matrix elements of the quadrupole operator in (4.22) must be substituted by the 
corresponding Fourier coefficients of the quadrupole tensor. Accordingly the contro- 
versial factor A = in the classical gravitational radiation formula (1.1) is verified by 
our quantum mechanical calculation. 

5. Absorption cross section 

With the transition probability for absorption we are able to calculate the absorption 
cross section of the quantum mechanical system for gravitational radiation. Starting 
from a damped system, we find with the use of (4.5) and (4.6) for the transition 
probability of absorption for polarised directional radiation 

Restricting ourselves to one incident frequency w, = w and multiplying by the energy 
hw, we obtain the absorption power 

Elimination of A’ by the energy density for polarised radiation per solid angle with 
frequency w (cf (4.12)) 

u(e;l,b)) = (w2c2 /32~f )A2  (5.3) 
results in 

Division by the energy flux density of the radiation (cu(e$,)) gives finally the absorption 
cross section belonging to the polarisation mode e;l,b, : 

Going over to unpolarised isotropic radiation, we have to perform in (5.5) the 
transition (4.7) and to average over the solid angle and the two polarisation states. Thus 
with the result (4.11) we find 

in accordance with (4.18). In the resonance case (w = W A ~ )  we obtain 

( 5 . 6 ~ )  

We note that the results (5.5) and (5.6) can be compared as the result (4.18) with 
experiments in general only for absorption processes from the ground state, because 
otherwise the induced ernission in consequence of a transition from the state / A )  into a 
lower energy state must be subtracted. This is also the reason for the fact that the direct 
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transition from (5.5) and (5.6) to the classical limit by substitution of the matrix 
elements through the Fourier coefficients of the mass quadrupole tensor is impossible. 

Finally we point out that the o-dependence of our result (5.6) is in view of the factor 
w not significant, as can be seen on the level of the Lagrangian formalism. In the sense 
of the possibility of adding a total time derivative to the Lagrangian the factor o-l is not 
gauge invariant, so that U-' should be taken as o& and the result (5.6) has meaning 
only near the resonance point. 

-1 

6. Comparison with the classical approach 

In § 4.2 we have shown as the main result that the classical radiation formula for the 
emission of gravitational quadrupole radiation can be deduced exactly by our quantum 
mechanical approach. On the other hand, for the absorption of gravitational radiation 
no general transitions to classical results for the absorption power as well as the 
absorption cross section exist. A special transition will be treated in the following by the 
use of a simple model for the quantum mechanical system. 

First, however, we show the general connection between our perturbation operator 
(3.15) and the phenomenological classical tidal force of equation (1.2). In the Heisen- 
berg picture the cperator (3.15) reads within our approximation 

and would enter the Lagrangian as - W. Using the freedom of adding a total time 
derivative (cf the end of P 5) the operator (6.1) is equivalent to the operator (we choose 
the same symbol) 

According to (3.10), 
77- h a b = - 2  Ra04 (6.3) 

is valid, by which equation (6.2) takes the gauge invariant form (against infinitesimal 
coordinate transformations) 

w = i n R a 4 b 4 Q a b .  (6.4) 
Because of the tracelessness of (6.3), we obtain with the use of (3.5) 

The classical force on the mass mi corresponding to the operator (6.5) is in view of the 
Hamilton equations given by 

(6.6) 

in full accordance with the tidal force of equation (1.2). As can be easily seen, the same 
force follows also immediately from the Lagrangian formalism with second time 
derivatives, using - W according to (6.1) as perturbation term. From this point of view 
it is to be expected that in the classical limit our quantum mechanical results for the 
absorption process are in exact agreement with the classical ones based on formula 
(1.2). 

b -a  wlax;, = -ITRa4b4miX(i) 
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In order to show this feature explicitly we take as special model a linear harmonic 
oscillator. For this we choose two point masses ml and m2 on the x 1  axis at the positions 
x:~, and x&) with the rest distance 2 L  and the harmonic spring constant K T .  The 
appertaining two-particle Hamilton operator reads, according to (3.13), 

Going over to relative and centre of mass coordinates (M = ml + m2) 

we obtain from (6.7) 

( 6 . 8 ~ )  

(6.8b) 

with the abbreviations 

CL = mtmz/M (reduced mass), ( 6 . 9 ~ )  

WO = ( K / p ) 1 ' 2  (eigenf requency). (6.96) 

For calculation of the absorption cross section (5.6) the knowledge of the quadru- 
pole tensor of the system is necessary. From (3.5) it follows with use of ( 6 . 8 ~ )  and 
(6.8b) that 

Qab = M ( 3 X a X b - R 2 q a b ) + q a b ,  

qab = p ( 3 x a x b  - r 2 q a b )  
(6.10) 

with 

( 6 . 1 0 ~ )  r = x  x q a b .  

As it should be the total Hamilton operator H = H o +  W (cf (3.13) and (3.15)) 
separates with respect to the centre of mass coordinates (external degrees of freedom) 
and the relative coordinates (internal degrees of freedom) and we can restrict ourselves 
for our purpose without loss of generality to the internal degrees of freedom. Then the 
accompanying energy eigenvalue equation reads (see (6.9)) 

2 a b  R2  = XaXbqab, 

h o 4 n  = En4n (6.11) 

with the well known oscillator energy eigenvalues and eigenvalue solutions$. Accord- 
ingly we find in view of (5.6) and (6.10) 

( 6 . 1 2 ~ )  

t This oscillator corresponds exactly to the 'vibrator' treated by Misner eral(l973 0 37.5). At the same time 
it is an example for a system with non-Coulomb-like two-particle interaction. 
$ For shortness the quantum numbers of the plane wave in the x z  and x 3  directions are omitted. 
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f o r A = n  a n d B = n + l ,  

for A = n - 1 and B = n, and zero for other values of A and B, valid when 2L is large in 
comparison with the domain, where the wavefunctions are essentially different from 
zero?. Evidently in this case the selection rule reads An = * 1  and OAB = wo holds. 

Herewith we obtain from (5 .6)  for the absorption case 

32 .rf 2 w :  ( n + l ) r / 2  
a n + n + l ( U )  =- - L - 15 c 3 p  ( w o - w ) 2 + r 2 / 4  

and for the case of induced emission, analogously, 

(6 .13a)  

(6 .136)  

The effective absorption cross section for the state In) is, according to the consideration 
following equation (5 .6) ,  given by 

a n  (0 = a n + n + l ( w )  - V n - l c n  (0) 

(6.14) 

This result does not depend on h and the quantum number n and can immediately be 
interpreted classically. Furthermore it is identical with the pure absorption cross 
section (6 .13a)  for the ground state n = 0.  

Choosing an oscillator with equal masses m l  = m2 = m, the result (6.14) leads to 

8 .rf 2 w i  r 
15 c ( w o - w ) 2 + r 2 / 4 '  

a ( w )  =- T m L  - (6.15) 

This effective absorption cross section is identical with the result given by Misner et a1 
(1973, p 1024). 

On the other hand, we are now able to write down also the energy loss of the 
oscillator by gravitational radiation in a simple way. Insertion of the result (6 .12b)  into 
equation (4.22) gives immediately as the energy loss by spontaneous emission from the 
state In) 

(6.16) 

Finally we go over to the classical limit. Choosing for simplicity equal masses ml = m2 = 
m, we find by equating the energy eigenvalue for n >> 1 with the energy of the classical 
oscillator with the same frequency 

(6 .17)  2 n h = m l  w o ,  

where 1 means the classical amplitude of the single masses. Substituting nh in (6.16) 

t This is equivalent to the condition n << 2L200&/h. 
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according to (6.17) we obtain for the emitted power of the 'vibrator! due to gravitational 
radiation 

in full accordance with the classical calculations (see e,g. Ohanian 1976). 
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